Latest on Breaking Quantum Physics News

foto1
foto1
foto1
foto1
foto1
+1 (801) 548-3892
info[at]tiny-house.ca

Tiny-House.ca

Where Building Small is BIG! The BC Community.

Breaking Quantum Physics News

Breaking Physics New with Our Quantum Physics Section

Phys.org provides the latest news on quantum physics, wave particle duality, quantum theory, quantum mechanics, quantum entanglement, quantum teleportation, and quantum computing.
  1. The strongest permanent magnets today contain a mix of the elements neodymium and iron. However, neodymium on its own does not behave like any known magnet, confounding researchers for more than a half-century. Physicists at Radboud University and Uppsala University have shown that neodymium behaves like a self-induced spin glass, meaning that it is composed of a rippled sea of many tiny whirling magnets circulating at different speeds and constantly evolving over time. Understanding this new type of magnetic behaviour refines our understanding of elements on the periodic table, and could eventually pave the way for new materials for artificial intelligence. The results will be published on 29th of May, in Science.
  2. Researchers at the University of Science and Technology of China have recently introduced a new satellite-based quantum-secure time transfer (QSTT) protocol that could enable more secure communications between different satellites or other technology in space. Their protocol, presented in a paper published in Nature Physics, is based on two-way quantum key distribution in free space, a technique to encrypt communications between different devices.
  3. To simulate in a laboratory what happens in particle accelerators has been an ambitious goal in the study of the fundamental forces of nature pursued by high-energy physicists for many years. Now, thanks to research conducted by the groups of statistical physics of SISSA—Scuola Internazionale Superiore di Studi Avanzati and the "Abdus Salam" International Centre for Theoretical Physics (ICTP), that goal is closer to reach.
  4. Researchers at the Center for Quantum Information and Quantum Biology at Osaka University used trapped ions to demonstrate the spreading of vibrational quanta as part of a quantum random walk. This work relies on their exquisite control of individual ions using lasers, and can lead to new quantum simulations of biological systems.
  5. A physicist has created the fifth state of matter working from home using quantum technology.
  6. A scientist at the University of Sydney has achieved what one quantum industry insider has described as "something that many researchers thought was impossible".
  7. Xu Yi, assistant professor of electrical and computer engineering at the University of Virginia, collaborated with Yun-Feng Xiao's group from Peking University and researchers at Caltech to achieve the broadest recorded spectral span in a microcomb.
  8. Researchers at University of Delaware, University of Arizona and Haverford College have recently introduced the idea of searching for scalar dark matter using compact acoustic resonators. Their paper, published in Physical Review Letters, theoretically demonstrates the potential of mechanical systems in searching for dark matter.
  9. A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
  10. Strong coupling between cavity photon modes and donor/acceptor molecules can form polaritons (hybrid particles made of a photon strongly coupled to an electric dipole) to facilitate selective vibrational energy transfer between molecules in the liquid phase. The process is typically arduous and hampered by weak intermolecular forces. In a new report now published on Science, Bo Xiang, and a team of scientists in materials science, engineering and biochemistry at the University of California, San Diego, U.S., reported a state-of-the-art strategy to engineer strong light-matter coupling. Using pump-probe and two-dimensional (2-D) infrared spectroscopy, Xiang et al. found that strong coupling in the cavity mode enhanced the vibrational energy transfer of two solute molecules. The team increased the energy transfer by increasing the cavity lifetime, suggesting the energy transfer process to be a polaritonic process. This pathway on vibrational energy transfer will open new directions for applications in remote chemistry, vibration polariton condensation and sensing mechanisms.
  11. Physicists at the National Institute of Standards and Technology have boosted their control of the fundamental properties of molecules at the quantum level by linking or "entangling" an electrically charged atom and an electrically charged molecule, showcasing a way to build hybrid quantum information systems that could manipulate, store and transmit different forms of data.
  12. Researchers at the Paul Scherrer Institute PSI have succeeded for the first time in recording a light-driven sodium pump from bacterial cells in action. The findings promise progress in the development of new methods in neurobiology. The researchers used the new X-ray free-electron laser SwissFEL for their investigations. They have published their findings today in the journal Nature.
  13. Scientists are using light waves to accelerate supercurrents and access the unique properties of the quantum world, including forbidden light emissions that one day could be applied to high-speed, quantum computers, communications and other technologies.
  14. Rare-earth minerals are a class of materials with similar properties that are currently used to build a variety of devices, including LEDs, rechargeable batteries, magnets, lasers, and much more. These materials' electron spins can be hosted in crystals, creating systems with unique characteristics that could serve as interfaces between telecom-band photons and long-lived spin quantum bits.
  15. A team of researchers at Heidelberg University has succeeded in building an apparatus that allowed them to observe Pauli crystals for the first time. They have written a paper describing their efforts and have uploaded it to the arXiv preprint server.
  16. U.S. and German physicists have found surprising evidence that one of the most famous phenomena in modern physics—the quantum Hall effect—is "reincarnated" in topological superconductors that could be used to build fault-tolerant quantum computers.
  17. A team of researchers at UCLA has set a new record for preparing and measuring the quantum bits, or qubits, inside of a quantum computer without error. The techniques they have developed make it easier to build quantum computers that outperform classical computers for important tasks, including the design of new materials and pharmaceuticals. The research is published in the peer-reviewed, online open-access journal, npj Quantum Information, published by Nature and including the exceptional research on quantum information and quantum computing.
  18. When probing the subtle effects of quantum mechanics, all the parameters in the system and its measurements need to be finely tuned to observe the result you are hoping for. So what happens when you gear everything towards detecting what you least expect? Researchers at MIT and Purdue University in the U.S. took just this approach and found they could amplify quantum signals by a factor of 30 while conditionally changing the relative phase of a photon from π/80 to π/2. The results could provide the missing link that nudges a number of quantum network technologies closer to practical use.
  19. Tantalum disulfide is a mysterious material. According to textbook theory, it should be a conducting metal, but in the real world, it acts like an insulator. Using a scanning tunneling microscope, researchers from the RIKEN Center for Emergent Matter Science have taken a high-resolution look at the structure of the material, revealing why it demonstrates this unintuitive behavior.
  20. In designing electronic devices, scientists look for ways to manipulate and control three basic properties of electrons: their charge; their spin states, which give rise to magnetism; and the shapes of the fuzzy clouds they form around the nuclei of atoms, which are known as orbitals.
English French German Italian Portuguese Russian Spanish

Lang