Latest on Breaking Quantum Physics News

foto1
foto1
foto1
foto1
foto1
+1 (801) 548-3892
info[at]tiny-house.ca

Tiny-House.ca

Where Building Small is BIG! The BC Community.

Breaking Quantum Physics News

Breaking Physics New with Our Quantum Physics Section

Phys.org provides the latest news on quantum physics, wave particle duality, quantum theory, quantum mechanics, quantum entanglement, quantum teleportation, and quantum computing.
  1. Oscillatory behaviors are ubiquitous in nature, ranging from the orbits of planets to the periodic motion of a swing. In pure crystalline systems, presenting a perfect spatially-periodic structure, the fundamental laws of quantum physics predict a remarkable and counter-intuitive oscillatory behavior: when subjected to a weak electric force, the electrons in the material do not undergo a net drift, but rather oscillate in space, a phenomenon known as Bloch oscillations. Ultracold atoms immersed in a light crystal, also known as optical lattices, are one of the many systems where Bloch oscillations have been observed.
  2. Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have begun building a quantum-enhanced X-ray microscope at the National Synchrotron Light Source II (NSLS-II). This groundbreaking microscope, supported by the Biological and Environmental Research progam at DOE's Office of Science, will enable researchers to image biomolecules like never before.
  3. Researchers have developed a new theory for observing a quantum vacuum that could lead to new insights into the behavior of black holes.
  4. A research team, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has discovered that when the rotational quantum states of non-polar molecules change under the influence of laser fields (non-resonant laser fields), so does their motion trajectories.
  5. The quantum dynamics of hydrogen are central to many problems in nature, being strongly influenced by the environment in which a reaction takes place. In their contribution to PRL, members of the Lise Meitner Group at the MPSD address hydrogen transfer within a supported molecular switch, showing that the surface support can play a decisive role in the tunneling reaction.
  6. A change in perspective can work wonders. This has been especially true with respect to the paradigms for explaining material properties using the concept of topology, "ideas that are currently revolutionizing condensed matter physics," according to Tel Aviv University researcher Roni Ilan. While topological physics first emerged in condensed matter physics, the ideas have now spread into many other areas, including optics and photonics, as well as acoustics and other mechanical systems, where things have been getting a little tricky.
  7. It is something quite common in physics: Electrons leave a certain material, fly away and are then measured. Some materials emit electrons when they are irradiated with light. These electrons are called photoelectrons. In materials research, so-called Auger electrons also play an important role—they can be emitted by atoms if an electron is first removed from one of the inner electron shells. But now scientists at TU Wien (Vienna) have succeeded in explaining a completely different type of electron emission that can occur in carbon materials such as graphite. This electron emission type has been known for about 50 years, but its cause was previously unclear.
  8. Magnetic materials are ubiquitous in modern society, present in nearly all the technological devices we use every day. In particular, personal electronics like smartphones/watches, tablets, and desktop computers all rely on magnetic material to store information. Information in modern devices is stored in long chains of 1's and 0's, in the binary number system used as the language of computers.
  9. Large objects, such as baseballs, vehicles, and planets, behave in accordance with the classical laws of mechanics formulated by Sir Isaac Newton. Small ones, such as atoms and subatomic particles, are governed by quantum mechanics, where an object can behave as both a wave and a particle.
  10. A researcher from The Australian National University (ANU) has used one of the most powerful supercomputers in the world to predict the quantum mechanical properties of large molecular systems with an accuracy that surpasses all previous experiments.
  11. A UNSW-led collaboration has found that removing random doping in quantum electronic devices dramatically improves their reproducibility—a key requirement for future applications such as quantum-information processing and spintronics.
  12. Shantanu Chakrabartty's laboratory has been working to create sensors that can run on the least amount of energy. His lab has been so successful at building smaller and more efficient sensors, that they've run into a roadblock in the form of a fundamental law of physics.
  13. Quantum sensors can measure extremely small changes in an environment by taking advantage of quantum phenomena like entanglement, where entangled particles can affect each other, even when separated by great distances.
  14. Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers. Their paper, entitled "Creating and Manipulating a Laughlin-Type ν=1/3 Fractional Quantum Hall State on a Quantum Computer with Linear Depth Circuits," appears in the December issue of PRX Quantum, a journal of the American Physical Society.
  15. With their ability to harness the strange powers of quantum mechanics, qubits are the basis for potentially world-changing technologies—like powerful new types of computers or ultra-precise sensors.
  16. A new study outlines ways colleges and universities can update their curricula to prepare the workforce for a new wave of quantum technology jobs. Three researchers, including Rochester Institute of Technology Associate Professor Ben Zwickl, suggested steps that need to be taken in a new paper in Physical Review Physics Education Research after interviewing managers at more than 20 quantum technology companies across the U.S.
  17. A major technical challenge for any practical, real-world quantum computer comes from the need for a large number of physical qubits to deal with errors that accumulate during computation. Such quantum error correction is resource-intensive and computationally time-consuming. But researchers have found an effective software method that enables significant compression of quantum circuits, relaxing the demands placed on hardware development.
  18. Like restless children posing for a family portrait, electrons won't hold still long enough to stay in any kind of fixed arrangement.
  19. Bristol researchers have developed a tiny device that paves the way for higher performance quantum computers and quantum communications, making them significantly faster than the current state-of-the-art.
  20. In 1973, physicist and later Nobel laureate Philip W. Anderson proposed a bizarre state of matter: the quantum spin liquid (QSL). Unlike the everyday liquids we know, the QSL actually has to do with magnetism—and magnetism has to do with spin.
English French German Italian Portuguese Russian Spanish

Lang